翻訳と辞書
Words near each other
・ Twin Oaks (Linthicum Heights, Maryland)
・ Twin Oaks (Washington, D.C.)
・ Twin Oaks (Wyoming, Ohio)
・ Twin Oaks Community, Virginia
・ Twin Oaks Farm
・ Twin Oaks, California
・ Twin Oaks, Delaware
・ Twin Oaks, Kern County, California
・ Twin Oaks, Missouri
・ Twin Oaks, North Carolina
・ Twin Oaks, Oklahoma
・ Twin Obscenity
・ Twin of Brothers
・ Twin of Brothers (2011 TV series)
・ Twin Pagoda Temple
Twin paradox
・ Twin peak
・ Twin Peaks
・ Twin Peaks (album)
・ Twin Peaks (Antarctica)
・ Twin Peaks (band)
・ Twin Peaks (British Columbia)
・ Twin Peaks (disambiguation)
・ Twin Peaks (Nevada)
・ Twin Peaks (restaurant chain)
・ Twin Peaks (San Francisco)
・ Twin Peaks (Santa Clara County, California)
・ Twin Peaks (Utah)
・ Twin Peaks (Wyoming)
・ Twin Peaks books


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Twin paradox : ウィキペディア英語版
Twin paradox

In physics, the twin paradox is a thought experiment in special relativity involving identical twins, one of whom makes a journey into space in a high-speed rocket and returns home to find that the twin who remained on Earth has aged more. This result appears puzzling because each twin sees the other twin as moving, and so, according to an incorrect naive〔, (Extract of page 541 )〕 application of time dilation and the principle of relativity, each should paradoxically find the other to have aged more slowly. However, this scenario can be resolved within the standard framework of special relativity: the travelling twin's trajectory involves two different inertial frames, one for the outbound journey and one for the inbound journey, and so there is no symmetry between the spacetime paths of the two twins. Therefore, the twin paradox is not a paradox in the sense of a logical contradiction.
Starting with Paul Langevin in 1911, there have been various explanations of this paradox. These explanations "can be grouped into those that focus on the effect of different standards of simultaneity in different frames, and those that designate the acceleration (by the travelling twin ) as the main reason...". Max von Laue argued in 1913 that since the traveling twin must be in two separate inertial frames, one on the way out and another on the way back, this frame switch is the reason for the aging difference, not the acceleration ''per se''. Explanations put forth by Albert Einstein and Max Born invoked gravitational time dilation to explain the aging as a direct effect of acceleration.
The twin paradox has been verified experimentally by precise measurements of atomic clocks flown in aircraft and satellites. For example, gravitational time dilation and special relativity together have been used to explain the Hafele–Keating experiment. It was also confirmed in particle accelerators by measuring time dilation of circulating particle beams.
==History==

In his famous work on special relativity in 1905, Albert Einstein predicted that when two clocks were brought together and synchronized, and then one was moved away and brought back, the clock which had undergone the traveling would be found to be lagging behind the clock which had stayed put. Einstein considered this to be a natural consequence of special relativity, not a paradox as some suggested, and in 1911, he restated and elaborated on this result as follows (with physicist Robert Resnick's comments following Einstein's):〔. via August Kopff, Hyman Levy (translator), ''The Mathematical Theory of Relativity'' (London: Methuen & Co., Ltd., 1923), p. 52, as quoted by G.J. Whitrow, ''The Natural Philosophy of Time'' (New York: Harper Torchbooks, 1961), p. 215.〕
::"If we placed a living organism in a box ... one could arrange that the organism, after any arbitrary lengthy flight, could be returned to its original spot in a scarcely altered condition, while corresponding organisms which had remained in their original positions had already long since given way to new generations. For the moving organism, the lengthy time of the journey was a mere instant, provided the motion took place with approximately the speed of light."
::If the stationary organism is a man and the traveling one is his twin, then the traveler returns home to find his twin brother much aged compared to himself. The paradox centers around the contention that, in relativity, either twin could regard the other as the traveler, in which case each should find the other younger—a logical contradiction. This contention assumes that the twins' situations are symmetrical and interchangeable, an assumption that is not correct. Furthermore, the accessible experiments have been done and support Einstein's prediction. ...
In 1911, Paul Langevin gave a "striking example" by describing the story of a traveler making a trip at a Lorentz factor of (99.995% the speed of light). The traveler remains in a projectile for one year of his time, and then reverses direction. Upon return, the traveler will find that he has aged two years, while 200 years have passed on Earth. During the trip, both the traveler and Earth keep sending signals to each other at a constant rate, which places Langevin's story among the Doppler shift versions of the twin paradox. The relativistic effects upon the signal rates are used to account for the different aging rates. The asymmetry that occurred because only the traveler underwent acceleration, is used to explain why there is any difference at all, because "any change of velocity, or any acceleration has an absolute meaning".〔 (translated by J. B. Sykes, 1973).〕
Max von Laue (1911, 1913) elaborated on Langevin's explanation. Using Minkowski's spacetime formalism, Laue went on to demonstrate that the world lines of the inertially moving bodies maximize the proper time elapsed between two events. He also wrote that the asymmetric aging is completely accounted for by the fact that the astronaut twin travels in two separate frames, while the Earth twin remains in one frame, and the time of acceleration can be made arbitrarily small compared with the time of inertial motion. Eventually, Lord Halsbury and others removed any acceleration by introducing the "three-brother" approach. The traveling twin transfers his clock reading to a third one, traveling in the opposite direction. Another way of avoiding acceleration effects is the use of the relativistic Doppler effect (see What it looks like: the relativistic Doppler shift below).
Neither Einstein nor Langevin considered such results to be problematic: Einstein only called it "peculiar" while Langevin presented it as a consequence of absolute acceleration.〔"We are going to see this absolute character of the acceleration manifest itself in another form." ("Nous allons voir se manifester sous une autre forme ce caractère absolu de l'accélération."), page 82 of Langevin1911〕 Both men argued that, from the time differential illustrated by the story of the twins, no self-contradiction could be constructed. In other words, neither Einstein nor Langevin saw the story of the twins as constituting a challenge to the self-consistency of relativistic physics.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Twin paradox」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.